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Notes on the Classification of
Vector Bundles

Orlando Alvarez∗

Rob,

The only way I can understand these things is by reconstructing the ideas. I am

very happy because I had never worked out the bundle classification stuff out in detail.

I learned a long time ago from Singer that it is not necessary to do things in the most

generality to try to understand what is going on. For example, the exact homotopy

sequence is a theorem of Topology but it is easier to understand if you are in Geometry

where there is a connection as in the case 0→ H → G→ G/H → 0.

The notes are very rough. I have added more stuff to Section 1. I want to work

out here how to compute H2(M,ZN) in the case of four manifolds so I worked out the

associated problem in two dimensions by working out H1(M,ZN) for the torus and the

Klein bottle. I still have to get to H2(M,ZN) for dimM = 4. In Sections 2 and 3 I

use as a warm up to go on to more advanced stuff and later on I will add some stuff

here to see how much easier it is if you have a connection. Finally the stuff of interest

is in Section 4. At the end I explain the origin of classifying spaces in Section 7.

I have taken to writing notes in LATEX because I can never find old hand written

notes.

Orlando

[Feb. 11] Corrected some typos and slightly changed some notation and added some

miscellaneous improvements. I think I see the light at the end of the tunnel to make

contact with what you sent me on ZN monopoles. I have to finish something else this

week so I will get back to this later.

[Feb. 12] Corrected more typos some critical.
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1 Basics

I am going to try to develop the classification of G-bundles over a four manifold. You

don’t need all the general machinery.

We are on a connected compact manifold M . We implicitly assume that we have

chosen a “good cover” {Vα} on M .

We discuss two examples. In the orientation example (Section 2) we are starting

with a larger group O(n) and reducing to a smaller group SO(n). In the spin structure

example (Section 3) we start with a smaller group SO(n) and try to lift things to a

larger group Spin(n).

Let’s make some basic homological and cohomological observations. For the mo-

ment dimM = n and we assume M is orientable. It is a fact that the homology groups
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are of the form Hk(M,Z) = Fk ⊕Tk where

Fk = Z⊕ · · · ⊕ Z ,

Tk = Zn1 ⊕ · · · ⊕ Znrk
.

Fk is called the free part and Tk is called the torsion part. The universal coefficient

theorem tells you that the cohomology is given by

Hk(M,Z) = Fk ⊕Tk−1 . (1.1)

Poincaré duality tells you that Hk(M,Z) ≈ Hn−k(M,Z). Putting this together with

the universal coefficients theorem we have that Fn ≈ Fn−k and Tk ≈ Tn−k−1. For a

connected compact manifold H0(M,Z) = Z and Hn(M,Z) = Z. Note that T0 = 0.

Let’s specialize to the case of dimM = 4 and orientable. In this case we have that

Fk ≈ F4−k and Tk ≈ T3−k. We can make a table:

H0(M,Z) = Z ,

H1(M,Z) = F1 ,

H2(M,Z) = F2 ⊕T1 ,

H3(M,Z) = F1 ⊕T1 ,

H4(M,Z) = Z .

(1.2)

Let’s specialize to the case of dim Σ = 3 and orientable. In this case we have that

Fk(Σ) ≈ F3−k(Σ) and Tk(Σ) ≈ T2−k(Σ). We can make a table:

H0(Σ,Z) = Z ,

H1(Σ,Z) = F1(Σ) ,

H2(Σ,Z) = F1(Σ)⊕T1(Σ) ,

H3(Σ,Z) = Z .
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For a 4-manifold of the form M = S1 × Σ we have

H0(M,Z) = Z ,

H1(M,Z) = H1(Σ,Z)⊕ Z ,

= F1(Σ)⊕ Z ,

H2(M,Z) = H2(Σ,Z)⊕H1(Σ,Z) ,

= F1(Σ)⊕ F1(Σ)⊕T1(Σ) ,

H3(M,Z) = Z⊕H2(Σ,Z) ,

= Z⊕ F1(Σ)⊕T1(Σ) ,

H4(M,Z) = Z .

(1.3)

This table agrees with equation (1.2). Note that we learned that F1(M) ≈ F1(Σ)⊕ Z
and F2(M) ≈ F1(Σ)⊕ F1(Σ) and T1(M) ≈ T1(Σ).

For the type of manifold we consider Σ = S3, S1 × S2, S1 × S1 × S1 there is no

torsion so things simplify. For example if Σ = S3 then

H0(S1 × S3,Z) = Z ,

H1(S1 × S3,Z) = Z ,

H2(S1 × S3,Z) = 0 ,

H3(S1 × S3,Z) = Z ,

H4(S1 × S3,Z) = Z .

(1.4)

For the type of manifold ‘tHooft considered Σ = (S1)3 then

H0(S1 × (S1)3,Z) = Z ,

H1(S1 × (S1)3,Z) = Z4 ,

H2(S1 × (S1)3,Z) = Z6 ,

H3(S1 × (S1)3,Z) = Z4 ,

H4(S1 × (S1)3,Z) = Z .

(1.5)

Finally to compute Hk(M,ZN) we need the long exact cohomology sequence. Given

the short exact sequence

0→ Z N−−−−→ Z mod N−−−−−−−→ ZN → 0
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there is a long exact sequence in cohomology.

· · · → Hp(M, Z) mod N−−−−−−→ Hp(M, ZN ) ϑ−→ Hp+1(M, Z) N−→ Hp(M, Z)→ · · · .

The piece that interests us is

· · · → H2(M,Z)
mod N−−−−−→ H2(M,ZN)

ϑ−→ H3(M,Z)
N−→ H3(M,Z)→ · · · , (1.6)

where ϑ is the Bockstein homomorphism. What is the Bockstein homomorphism? I

am going to drop the “M” to simplify notation. The p-cochains in M with integer

coefficients will be denoted by Cp(Z), etc. The short exact sequence induces a short

exact sequence on cochains. The Cech differential δ commutes with the group actions.

Thus we have

0 −−−→ Cp+1(Z)
N−−−→ Cp+1(Z)

mod N−−−−−→ Cp+1(ZN) −−−→ 0

δ

x δ

x δ

x
0 −−−→ Cp(Z)

N−−−→ Cp(Z)
mod N−−−−−→ Cp(ZN) −−−→ 0

(1.7)

Let’s construct the Bockstein homomorphism. Let [ν] ∈ Hp(ZN), I can represent

this cohomology class1 by a cochain in ν ∈ Cp(ZN) and think of it in two equiva-

lent ways. I have a collection of integers modulo N with (p + 1) indices {nα0α1...αp

mod N} or I can write this as {exp(2πinα0α1...αp/N)}. The cocycle condition may

be written as δ{nα0α1...αp mod N} = 0 mod N . Note that {nα0α1...αp} ∈ Cp(Z) and

that δ{nα0α1...αp} = N{mα0α1...αpαp+1} where {mα0α1...αpαp+1} ∈ Cp(Z). It is straight-

forward to verify that δ{mα0α1...αpαp+1} = 0. This means that to the cohomology class

[ν] ∈ Hp(ZN) I can assign a cohomology class [mα0α1...αpαp+1 ] ∈ Hp+1(Z). You can

show that all this is does not depend on the representatives chosen for the cohomology

classes. The upshot of this is that we can schematically write for the Bockstein map:

{m} =
1

N
δ{n} . (1.8)

To make contact with something we know we look at the cohomology classes needed

to define a line bundle. A line bundle is defined by a 1-cocycle {ϕαβ} that satisfies

ϕαβϕβγϕγα = 1. Let F∗ be the “sheaf of non-vanishing complex valued functions”,

i.e., local functions that don’t vanish. Let F be the sheaf of complex valued functions.

There is a short exact sequence 0 → 2πiZ → F exp−−→ F∗ → 0. From my Cech

cohomology paper you know that Hp(F) = 0 for p > 0. Given the 1-cocycle {ϕαβ},
the short exact sequence tells us we can construct a 1-cochain {ψαβ} ∈ C1(F) such

that eiψαβ = ϕαβ. The cocycle condition on ϕ becomes exp(θαβ + θβγ + θγα) = 1. This

1I use the standard notation that equivalence class of ν is written ad [ν].
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Figure 1: A torus represented as a square with opposite sides identified. There
is one vertex P . There are two 2-simplices p and r, and three 1-simplices a, b and
c. Note that ∂P = 0, ∂a = ∂b = ∂c = 0, and ∂p = a+b+c and ∂r = −(a+b+c).
The fundamental 2-cycle of the torus is p + r with ∂(p + r) = 0.

tells us that θαβ + θβγ + θγα = 2πinαβγ where {nαβγ} ∈ C2(Z). You can verify that this

integral 2-cochain is closed. The associated long exact sequence is

H1(F)
exp−−−→ H1(F∗) ϑ−−−→ H2(Z) −−−→ H2(F)∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥

0
exp−−−→ H1(F∗) ϑ−−−→ H2(Z) −−−→ 0

The bottom row tells us that H1(M,F∗) ≈ H2(M,Z) and so line bundles are topo-

logically classified by their first Chern class. The lesson here is that even though

H1(F) = 0 we can have H1(F∗) 6= 0.

The reason for the last comment is that in the piece of the long exact cohomology

sequence that is of interest to us (1.6) it may be possible for H2(M,Z) = 0 but

H2(M,ZN) 6= 0 just the stuff involving F and F∗. Also to connect to the above I

remind you that (n mod N) is the same as e2πin/N .

1.1 Homology and Cohomology of a Torus

As a warm-up exercise let’s compute the homology of a torus with simplicial decompo-

sition given in Figure 1. In a sense that I will make clear in the example that follows

it is easier for H2(M,ZN) to be non-zero compared to H2(M,Z) analogous to the line

bundle case for H1(M,F∗) and H1(M,F). I want to work out an example using the

torus M = T2 to illustrate my point.
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First let’s compute the homology of a torus. Let the boundary operator acting on

k-chains be denoted by ∂k : Ck(M,Z)→ Ck−1(M,Z). The homology groups are given

by Hk(M,Z) = (ker ∂k)/(im ∂k+1).

1. [Computation of H0(M,Z)] Clearly ker ∂0 = {kP | k ∈ Z}. Since ∂a = ∂b =

∂c = 0 we have that im ∂1 = 0. From this we see that H0(M,Z) = Z.

2. [Computation ofH1(M,Z)] We see that ker ∂1 = {kaa+kbb+kcc | ka, kb, kc ∈ Z} =

Z3. Next we see that im ∂2 = {∂(kpp+krr) = (kp−kr)(a+b+c) | kp, kr ∈ Z} = Z.

Note that we can rewrite kaa+ kbb+ kcc = (ka− kc)a+ (kb− kc)b+ kc(a+ b+ c).

The last term is im ∂2, once kc is given then ka − kc and kb − kc can be freely

specified so we see that H1(M,Z) = Z2 and it is generated by the [a] and [b]

cycles.

3. [Computation of H2(M,Z)] We know that there are no 3-chains so H2(M,Z) =

ker ∂2. Since ∂(kpp+ krr) = (kp− kr)(a+ b+ c) we see that H2(M,Z) = ker ∂2 =

{k(p+ r) | k ∈ Z} = Z and H2(M,Z) generated by the fundamental cycle [p+ r].

Now we move to computing the cohomology. Remember that the cochains are the

linear functionals: Cp(M,Z) = {α : Cp(M,Z) → Z}. For 0-chain P we have a linear

functional Π. For the 1-chains we have the dual basis α, β and γ. For the 2-cochains we

have dual basis π and ρ. If we denote the differential by δk : Ck(M,Z)→ Ck+1(M,Z)

then Hk(M,Z) = (ker δk)/(im δk−1). If λ ∈ Ck(M,Z) then the differential δk is defined

by (δkλ) = λ ◦ ∂k+1.

1. [Computation of H0(M,Z)] In this case we have that H0(M,Z) = ker δ0. Now

(δΠ)(kaa+kbb+kcc) = Π(∂(kaa+kbb+kcc)) = 0 which tells us that H0(M,Z) =

ker δ0 = {nΠ | n ∈ Z} = Z.

2. [Computation of H1(M,Z)] λ ∈ C1(M,Z) is of the form λ = nαα + nββ + nγγ.

We want δλ = 0 which means that λ ◦ ∂2 = 0, i.e., λ(∂2p) = (nα + nβ + nγ) = 0

and λ(∂2r) = −(nα+nβ+nγ) = 0. Note that in computing H0(M,Z) we actually

learned that im δ0 = 0. Note that we can write λ = nα(α − γ) + nβ(β − γ) +

(nα +nβ +nγ)γ so the cocycles are ker δ1 = {nα(α− γ)+nβ(β− γ)} = Z2. Thus

we have shown that H1(M,Z) = Z2.

3. [Computation of H2(M,Z)] Since we are at the top we have that ker δ2 =

C2(M,Z). From the calculation of H1(M,Z) you see that im δ1 = {(nα + nβ +

nγ)(π − ρ)}. Since we can write kππ + kρρ = kπ(π − ρ) + (kπ + kρ)ρ we see that

H2(M,Z) = Z.
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The computation above could also be done using the following table

δΠ = 0 ,

δα = π − ρ , δβ = π − ρ , δγ = π − ρ ,
δπ = 0 , δρ = 0 .

(1.9)

which will be useful in what follows.

Next we compute cohomology with ZN coefficients. A 1-cochain with values in

an abelian group A is a linear transformation that assign to each integer 1-chain an

element of A. For example λ ∈ C1(M,ZN) is given by λ = uαα + uββ + uγγ where

uα, uβ and uγ are in ZN . It is convenient to write uα = nα mod N , etc. Let’s

compute H1(M,ZN). We have that δλ = (nα + nβ + nγ)(π − ρ) mod N and λ may

be written as λ = nα(α − γ) + nβ(β − γ) + (nα + nβ + nγ)γ mod N . From this we

see that ker δ1 = {nα(α − γ) + nβ(β − γ) mod N}. Since im δ0 = 0 we have that

H2(M,ZN) = (ker δ1)/(im δ0) = ZN ⊕ ZN and is generated by [α− γ] and [β − γ].

Next we construct the Bockstein homomorphism ϑ : H1(M,ZN)→ H2(M,Z). Let

[λ] ∈ H1(M,ZN). Choose a representative λ = nα(α − γ) + nβ(β − γ) mod N ∈
C1(M,ZN). This representative is the image of a chain µ = nα(α − γ) + nβ(β − γ) ∈
C1(M,Z), see the red mod N map in (1.7). Next we apply the blue δ operation in

(1.7) and obtain δµ = 0. This means that the inverse image of the green N map in

(1.7) is zero and thus we conclude that ϑ[λ] = 0. The relevant piece of the long exact

sequence is

H1(M,Z)
mod N−−−−−→ H1(M,ZN)

ϑ−−−→ H2(M,Z)
N−−−→ H2(M,Z)∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥

Z⊕ Z mod N−−−−−→
onto

ZN ⊕ ZN
ϑ=0−−−→ Z N−−−→

1-1
Z

The “arrow subscripts” are the consequences of the Bockstein map being zero.

1.2 Homology and Cohomology of a Klein Bottle

As another warm-up exercise let’s compute the homology of a Klein bottle with sim-

plicial decomposition given in Figure 2. I want to work out an example using the Klein

bottle M to illustrate some subtleties.

First let’s compute the homology.

1. [Computation of H0(M,Z)] Clearly ker ∂0 = {kP | k ∈ Z}. Since ∂a = ∂b =

∂c = 0 we have that im ∂1 = 0. From this we see that H0(M,Z) = Z.
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Figure 2: A Klein bottle represented as a square with opposite sides identified.
There is one vertex P . There are two 2-simplices p and r, and three 1-simplices
a, b and c. Note that ∂P = 0, ∂a = ∂b = ∂c = 0, and ∂p = a + b + c and
∂r = −a + b− c.

2. [Computation of H1(M,Z)] We see that ker ∂1 = {kaa + kbb + kcc | ka, kb, kc ∈
Z} = Z3. Next we see that im ∂2 = {∂(kpp+krr) = kp(a+b+c)+kq(−a+b−c)}.
We remark that kp(a+ b+ c) + kq(−a+ b− c) = (kp − kq)(a+ b+ c) + 2kqb, and

especially that kp−kq can be an arbitrary integer and that 2kq can be an arbitrary

even integer. We rewrite kaa+ kbb+ kcc = (ka− kc)a+ (kb− kc)b+ kc(a+ b+ c).

We see that H1(M,Z) = (ker ∂1)/(im ∂2) = Z ⊕ Z2 where Z is generated by [a]

and Z2 is generated by [b]. Here we have a torsion subgroup Z2 in the homology.

3. [Computation of H2(M,Z)] We know that there are no 3-chains so H2(M,Z) =

ker ∂2. Since ∂(kpp + krr) = kp(a + b + c) + kr(−a + b − c) 6= 0 we see that

H2(M,Z) = ker ∂2 = 0.

Now we move to computing the cohomology.

1. [Computation of H0(M,Z)] In this case we have that H0(M,Z) = ker δ0. Now

(δΠ)(kaa+kbb+kcc) = Π(∂(kaa+kbb+kcc)) = 0 which tells us that H0(M,Z) =

ker δ0 = {nΠ | n ∈ Z} = Z.

2. [Computation of H1(M,Z)] λ ∈ C1(M,Z) is of the form λ = nαα + nββ + nγγ.

We want δλ = 0 which means that λ ◦ ∂2 = 0, i.e., λ(∂2p) = nα + nβ + nγ = 0

and λ(∂2r) = −nα + nβ − nγ = 0. These equations tell you that nα + nγ = 0 and

nβ = 0. Note that in computing H0(M,Z) we actually learned that im δ0 = 0.

Note that we can write λ = nα(α − γ) + nββ + (nα + nγ)γ so the cocycles are

ker δ1 = {nα(α − γ)} = Z. Thus we have shown that H1(M,Z) = Z. This is in

agreement with the universal coefficients theorem (1.1).
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3. [Computation of H2(M,Z)] Since we are at the top we have that ker δ2 =

C2(M,Z). From the calculation of H1(M,Z) you see that im δ1 = {(nα + nβ +

nγ)π+ (−nα + nβ − nγ)ρ}. We can write (nα + nβ + nγ)π+ (−nα + nβ − nγ)ρ =

(nα + nβ + nγ)(π − ρ) + 2nβρ and kππ + kρρ = kπ(π − ρ) + (kπ + kρ)ρ. We note

that nα + nβ + nγ is an arbitrary integer and 2nβ is an arbitrary even integer.

From this we see that H2(M,Z) = Z2 where we can take the generator to be [ρ].

This result agrees with the universal coefficients theorem (1.1).

The computation above could also be done using the following table

δΠ = 0 ,

δα = π − ρ , δβ = π + ρ , δγ = π − ρ ,
δπ = 0 , δρ = 0 .

(1.10)

which will be useful in what follows.

Next we compute cohomology with ZN coefficients. A For example, let λ ∈
C1(M,ZN) be given by λ = nαα+ nββ + nγγ mod N We have that δλ = (nα + nβ +

nγ)π+(−nα+nβ−nγ)ρ mod N . From this we see that λ ∈ ker δ1 if nα+nβ +nγ = 0

mod N and −nα + nβ − nγ = 0 mod N . Next we note that −nα + nβ − nγ =

2nβ − (nα + nβ + nγ) so the two condition for λ being in the kernel may be replaced

by the two equivalent conditions nα + nβ + nγ = 0 mod N and 2nβ = 0 mod N .

Since λ may be written as λ = nα(α − γ) + nβ(β − γ) + (nα + nβ + nγ)γ mod N

we see that there are two cases to consider when determining ker δ1. The simpler case

is N odd and the more complicated case is N even.

First, we assume that N is odd and be observe that ZN does not have a non-

trivial element of order 2 and therefore we conclude that nβ = 0 mod N . This means

that λ ∈ ker δ1 if λ = nα(α − γ) mod N . We see that H1(M,ZN) = ZN and is

generated by [α − γ]. It is also interesting to construct H2(M,ZN) because it fits

nicely into the long exact cohomology sequence as we will see shortly. We note that

H2(M,ZN) = C2(M,ZN)/δ1C
1(M,ZN). Note that nππ+nρρ mod ZN = nπ(π− ρ) +

(nρ + nπ)ρ mod ZN and δλ = (nα + nβ + nγ)(π− ρ) + 2nβρ mod N . Since N is odd,

elements of type 2nβ mod N give you all of ZN and we conclude that H2(M,ZN) = 0.

Next we construct the Bockstein homomorphism ϑ : H1(M,ZN) → H2(M,Z). Let

[λ] ∈ H1(M,ZN). Choose a representative λ = nα(α− γ) mod N ∈ C1(M,ZN). This

representative is the image of a chain µ = nα(α− γ) ∈ C1(M,Z), see the red mod N

map in (1.7). Next we apply the blue δ operation in (1.7) and obtain δµ = 0. This

means that the inverse image of the green N map in (1.7) is zero and thus we conclude

that ϑ[λ] = 0. The relevant piece of the long exact sequence is
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H1(M, Z)
mod N−−−−−−−→ H1(M, ZN )

ϑ−−−−−−→ H2(M, Z)
N−−−−−−→ H2(M, Z)

mod N−−−−−−−→ H2(M, ZN )‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚
Z mod N−−−−−−−→

onto
ZN

ϑ=0−−−−−−→ Z2
N−−−−−−−→

1-1, onto
Z2

mod N−−−−−−−→
onto

0

From algebra we know that multiplication by odd N is an isomorphism in Z2 and

this is in agreement with our figure. Of course we could have taken the long exact

sequence and concluded that Bockstein was zero without the computation because the

only homomorphism from ZN to Z2 is the zero homomorphism if N is odd.

Secondly we consider N even which has and order 2 subgroup isomorphic to Z2

generated by {0 mod N, 1
2
N mod N}. We see that H1(M,ZN) = ZN ⊕ ZN/Z2 ≈

ZN ⊕ZN/2 where ZN is generated by [α− γ] and ZN/2 is generated by [β − γ]. Finally

for completeness we calculate H2(M,ZN). In a previous calculation we used nππ+nρρ

mod ZN = nπ(π − ρ) + (nρ + nπ)ρ mod ZN and δλ = (nα + nβ + nγ)(π − ρ) + 2nβρ

mod N . The difference is that N is now even and elements of type 2nβ mod N

generate a ZN/2 subgroup. So we conclude that H2(M,ZN) = ZN/ZN/2 ≈ Z2. I don’t

want to spend more time on this stuff but let me write down the relevant part of the

long exact cohomology sequence.

H1(M, Z)
mod N−−−−−−−→ H1(M, ZN )

ϑ−−−−−−→ H2(M, Z)
N−−−−−−→ H2(M, Z)

mod N−−−−−−−→ H2(M, ZN )‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚ ‚‚‚
Z mod N−−−−−−−→ ZN ⊕ ZN/2

ϑ−−−−−−→ Z2
N−−−−−−→ Z2

mod N−−−−−−−→ Z2

This table agrees with a theorem in algebraic topology [1, Proposition 3E.3 part c]

that states that if p is a prime then a Zp summand of Hk(M,Z) gives Zp summands

of Hk−1(M,Zp) and Hk(M,Zp). We consider the case N = 2, p = 2 and k = 2.

2 Orientation

On any manifold M we can always put a riemannian metric. Let O(M) → M be

the orthonormal frame bundle with transition functions {φαβ} satisfying the 1-cocycle

condition φαβφβγφγα = 1. The question of orientability is whether we can reduce the

structure group to SO(n) and construct the bundle of orientable orthonormal frames

SO(M)→M . Let ∆αβ = detφαβ = ±1 then it follows from the cocycle condition that

∆αβ∆βγ∆γα = 1. The 1-cocycle {∆αβ} defines a line bundle. The cohomology class of

this cocycle is denoted by w1 ∈ H1(M,Z2) and is called the first Stiefel-Whitney class.

The question is whether you can choose ∆αβ = +1 and in this way define an orientation,

i.e., the orientation line bundle. Since detφαβ = +1, the structure group is reduced to

SO(n). The way to do is to change the orientation of the framing for each open set
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PP

QQ

ΓΓ

Figure 3: A tubular neighborhood of a path Γ from P to Q is covered by small
contractible open sets.

Vα. If the transformation is given by ψα : Vα → O(n) then the new cocycle is given by

∆′
αβ = (detψα)

−1∆αβ(detψβ). Requiring ∆′ = 1 means that ∆αβ = (detψα)(detψβ)
−1,

i.e., the 1-cocycle ∆αβ is exact. The manifold M is orientable if the w1 is trivial. Note

that is the manifold is connected and simply connected then it is orientable.

Note that the space of riemannian metrics on M is an affine space because if g0

and g1 are metrics on M then gt = (1− t)g0 + tg1 for t ∈ [0, 1] is a metric on M . Any

homotopy of the metric cannot affect the transition functions since ∆αβ = ±1. The

argument is independent of the choice of metric and therefore topological.

2.1 Orientation and Connections

We have a connected manifold with metric therefore we impose the torsion free rie-

mannian (Levi-Civita) connection on the orthonormal frame bundle. The existence of

a metric means that we can construct the bundle of orthonormal frames O(M)→M .

Fix a point P ∈M and an orthonormal frame fP at P . The choice of fP determines an

orientation at P . The question is whether at all other points in M we can can assign

the same orientation of an orthonormal frame. Clearly in a small open set U we can

assign a consistent orientation. The question is what happens as we string a whole

bunch of open sets together. It is clear that it can be done in a tubular neighborhood

of a fixed path Γ from P to Q as in Figure 3. We can parallel transport the frame fP

along the path Γ to Q. The orientation can be extended locally from the path Γ to the

neighborhood depicted in Figure 3. Since M is connected, for each Q ∈M we can find

a path ΓQ from P to Q, by parallel transport we can assign an orientation to the frames

at Q. Note that parallel transport gives an isometry L(ΓQ) : TPM → TQM . The only

issue is whether this assignment is well defined. Assume I chose a different path Γ′Q.
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Will I get the same orientation? The thing is to see if the isometries L(ΓQ) and L(Γ′Q)

lead to the same orientation. The easiest way to think about this is to consider the

isometry L(Γ′Q)−1L(ΓQ) = L(Γ′Q
−1 ◦ ΓQ) : TP → TP and compute detL(Γ′Q

−1 ◦ ΓQ). If

the answer is +1 then the two paths assigned the same orientation. Note that since ±1

are disconnected two homotopic paths must both assign the same orientation. If the

two paths are homotopic then the combined path Γ′Q
−1 ◦ ΓQ is null homotopic. What

we have constructed is a homomorphism from homotopy classes loops based at P to Z2.

Let γ be a loop based at P then consider detL(γ). This actually defines a map from

π1(M) → Z2. Note that since Z2 is abelian this induces a map w1 : H1(M,Z) → Z2

called the first Stiefel-Whitney class.

3 Spin Structures

We assume M is orientable for simplicity. All manifolds admit a riemannian metric

and the induced bundle of orthonormal frames is SO(M)→M . The group Spin(n) is

the universal cover of SO(n) and the question is whether we can lift the orthonormal

frame bundle and construct the spin frame bundle Spin(M) → M . We can slightly

generalize this problem. Let G̃ be a connected, simply connected compact Lie group

and let Z̃ ⊂ G̃ be a subgroup of the center of G̃. Let G = G̃/Z̃ then π1(G) = Z̃.

Let P → M be a principal G-bundle. Can we lift P to a principal G̃-bundle

P̃ → M? In the case of spinors we have G = SO(n), G̃ = Spin(n) and Z̃ = Z2.

Let p : G̃ → G be the covering transformation. If g ∈ G then p−1(g) ⊂ G̃ contains

#Z̃ elements. In plain language, there are #Z̃ possible lifts of g, and in particular

p−1(1G) = Z̃. Assume φαβ : Vα ∩ Vβ → G are the transition functions for P →
M . Remember that they satisfy φαβφβγφγα = 1G. We want to construct transition

functions φ̃αβ such that φαβ = p ◦ φ̃αβ and φ̃αβφ̃βγφ̃γα = 1 eG.

Let φ̃αβ be any lift of φαβ. Note that any other lift will be of the form z̃αβφ̃αβ where

z̃αβ ∈ Z̃. In general

φ̃αβφ̃βγφ̃γα = z̃αβγ where z̃αβγ ∈ Z̃.

The reason is that applying the projection p to the left hand side gives 1G so the right

hand side of the above must be in the center. Since the right hand side is in general

not zero there is no principal bundle P̃ that is a lift of P . You can convince yourself

that on a quadruple overlap Vα ∩ Vβ ∩ Vγ ∩ Vδ 6= the z̃αβγ be a 2-cocycle:

z̃αβγ z̃
−1
βγδz̃γδαz̃

−1
δαβ = 1 eG .
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Remember that if we change the lift φ̃αβ → φ̃αβ z̃αβ and consequently z̃αβγ → z̃αβγ z̃αβ z̃βγ z̃γα.

Let [z̃αβγ] ∈ H2(M, Z̃) be the cohomology class of the 2-cocycle {z̃αβγ}. The condition

that P̃ → M exist is that the 2-cohomology class [z̃αβγ] must vanish2. Assume the

cohomology class vanishes then we can construct the transition functions {φαβ} for

one such bundle. Can we constructs other lifts? The answer is yes. Assume {z̃αβ} is

a 1-cocycle representing some cohomology class in H1(M, Z̃) then φ̃′αβ = z̃αβφ̃αβ are

good transition functions for some bundle P̃ ′ → M . We conclude that the lifts of

P → M are parametrized by H1(M, Z̃) and the obstruction to constructing the lift is

in H2(M, Z̃).

The most famous example is the spin frame bundle. In this case the obstruction

is denoted by w2 ∈ H2(M,Z2) and is called the second Stiefel-Whitney class. The

different spin frame bundles are classified by H1(M,Z2). For example, if the manifold

is simply connected then H1(M,Z2) vanishes and the spin frame bundle is unique.

Note that this discussion does not address the question of the classification of

P →M bundles. It just tells you how many P̃ →M bundles you can construct given

a fixed P →M bundle.

3.1 Spin Structures and Connections

For simplicity we assume our manifold is connected and simply connected. This means

that every loop is contractible. Since M is orientable, a metric gives us that bundle

of oriented orthonormal frames SO(M) → M . Consider a map φ : S2 → M and let

N ∈M be the image of the north pole, see Figure 4. We think of S2 as the unit square

and we will make an identification on the boundary such that φ maps the boundary

of the square to the point N . If (s, t) ∈ [0, 1] × [0, 1] then we will think of s as the

selector parameter which selects which loop, and t as the time parameter along the

loop. The loop with s = 0 is the trivial loop, i.e., φ(0, t) = N . As s increases the

loops start growing, eventually pass by the south pole and then start to shrink until at

s = 1 you have the trivial loop again. Let Γs be the loop described by φ(s, t). Parallel

transport along Γs using the orthogonal connection on SO(M) → M gives a map

(holonomy) H(Γs) : TNM → TNM that we can think as a group element in SO(n).

Note that H(Γ0) = H(Γ1) = I. We have constructed a map η : S1 → SO(n) given by

η(s) = H(Γs). Since π1(SO(n)) = Z2, you may find a homotopically non-trivial map.

It is clear that the answer only depends on the homotopy class [η] of the loop and on

2There is a lot of mathematics stuff going on with twisted K-theory and it is precisely what can
you say if this cohomology class does not vanish.
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Figure 4: A family of loops on M . The family is generated by a map φ : S2 →
M . We think of S2 as the unit square and we will make an identification on the
boundary such that φ maps the boundary of the square to the point N ∈M .The
loops are labelled by a parameter s and the parameter t is time along the loop.

the homotopy class [φ] of the map φ : S2 → M . Composition of parallel transport

tells you that you have a group homomorphism from the abelian group π2(M) to the

abelian group π1(SO(n)) = Z2. We have an induced map w2 : H2(M)→ Z2 called the

second Stiefel-Whitney class. The issue here is whether you can define the bundle of

spin frames Spin(M)→M . If w2 is non-zero then you cannot get a well defined spinor

frame because the answer depends on how you get there.

This construction becomes much more difficult if π1(M) 6= 0 because then there will

be different spin structures. Remember we already argued that the equivalence classes

of spin structures are labelled by H1(M,Z2). This construction using the connection

has to be adapted to single out which spin structure you are considering.

4 Classification of Bundles for dimM = 4

The exact homotopy sequence tells you that

· · · → πk(ZN)→ πk(SU(N))→ πk(SU(N)/ZN)→ πk−1(ZN)→ · · ·

Applying this with k = 1 we have an isomorphism π1(SU(N)/ZN) ≈ π0(ZN) = ZN .

Applying with k = 3 we have an isomorphism Z = π3(SU(N)) ≈ π3(SU(N)/ZN).

This last result tells us that the nontrivial topological 3-sphere is SU(N)/ZN is the

same as the one in SU(N). Also we conclude that π0(SU(N)/ZN) = π2(SU(N)/ZN) =

π4(SU(N)/ZN) = 0.

We begin with a good cover and a good simplicial decomposition of M . Let E →M
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be a SU(N)/ZN vector bundle. Choose any connection on this vector bundle and a

basepoint P on M . For every point Q on the 1-skeleton of the simplicial decomposition

choose a path to P . This can be done since M is connected. You can parallel transport

the fiber of E over Q back to P using the connection and in this way you trivialize the

bundle over the 1-skeleton.

Next we observe that since the bundle is trivial over each 1-simplex, we can identify

the ends of the simplex and in this way we can think of the 1-simplex as a circle an

we have a SU(N)/ZN bundle over S1. Such a bundle is trivial and any two trivializa-

tions are related by a map ξ(1) : S1 → SU(N)/ZN . Therefore the trivializations are

characterized by π1(SU(N)/ZN) = ZN . This means each trivialization I can assign a

collection {e2πinαβ/N} for each 1-simplex s
(1)
αβ . Assume the 2-simplex s

(2)
αβγ has boundary

∂s
(2)
αβγ = s

(1)
αβ+s

(1)
βγ +s

(1)
γα . The bundle is trivial on the boundary of the 2-simplex so it can

be extended to the interior since a 2-simplex is contractible. This must be true since the

bundle exists everywhere. Since we have identified all the fibers on the boundary of the

2-simplex, we effectively have a SU(N)/ZN bundle over S2. Such bundles are charac-

terized by giving the “equator patching map” which is a map ξ(2) : S1 → SU(N)/ZN .

So to each 2-simplex I have to assign an element e2πinαβγ/N ∈ ZN . This is the ZN

monopole number. You can verify that if you change the trivialization on s
(1)
αβ by

nαβ → (nαβ +mαβ) mod N then nαβγ → (nαβγ +mαβ +mβγ +mγα) mod N .

Next we look at the 3-skeleton. Let s
(3)
αβγδ be a three simplex with boundary ∂s

(3)
αβγδ =

s
(2)
αβγ − s

(2)
βγδ + · · · . Now s

(3)
αβγδ is topologically a 3-ball and ∂s

(3)
αβγδ is topologically S2.

We have constructed the bundle over the boundary S2. The 3-ball is topologically

contractible this means that any bundle over the ball must be trivial. This means that

the bundle on the boundary must be trivial3, i.e.,

nαβγ − nβγδ + nγδα − nδαβ = 0 mod N.

This means that {nαβγ} defines a cocycle and the cohomology class [nαβγ] ∈ H2(M,ZN)

of this cocycle characterizes the bundle. These are ZN monopoles. We learn that the

bundle has to be trivial on the boundary of each 3-simplex. This means that we

can identify the boundary as a point and the 3-simplex becomes effectively an S3.

SU(N)/ZN bundles are trivial over S3 since π2(SU(N)/ZN) = 0. The different trivial-

izations on S3 are given by a map ξ(3) : S3 → SU(N)/ZN and these are characterized

3This construction should be contrasted with what happens in the case of a Dirac magnetic
monopole. In that case we are in R3 with a singularity at the origin. On each S2 of radius r > 0 we
have a non-trivial bundle with Chern class given by

∫
B. Since the Chern class is integral it can’t

change as we shrink r so we find a singularity at r = 0. This should be contrasted with what happens
if you have non-singular configurations. Note that the non-singular field strength of the standard
instanton on S4 can be thought to arise from a singular “nonabelian monopole” at the origin in R5.
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by π3(SU(N)/ZN) = Z. We can trivialize over the 3-skeleton. Finally we look at the

4-skeleton. A 4-simplex is topologically contractible this means that bundle on the

boundary must be trivial and it is. We can identify all the fibers on the boundary

and effectively we have a bundle over S4. SU(N)/ZN bundles over S4 are given by

specifying the equator patching map ξ(4) : S3 → SU(N)/ZN . The topological classes of

these maps are π3(SU(N)/ZN) = Z. This means that we can assign an integer nαβγδε

to each 4-simplex sαβγδε. There is no 5-skeleton since we are on a 4-manifold so we can

stop here. These integers give a homology class [nαβγδε] ∈ H4(M,Z).

As far as I can tell to each SU(N)/ZN bundle E over a four manifold M we can

assign two cohomology classes ν(E) ∈ H2(M,ZN) and λ(E) ∈ H4(M,Z). I haven’t

thought about the converse.

5 Gauge Invariant ZN Flux

Here I describe how to see the ZN flux in a gauge invariant way. The basic scenario

that has to be understood is the case of M being simply connected analogous to the

discussion in Section 3.1. Assume we have a principal P → M bundle with structure

group SU(N)/ZN and connection A. Consider a map φ : S2 →M which we represent

as a square parametrized by (s, t) ∈ [0, 1] × [0, 1] as in Figure 4. I will think of s as

the selector parameter which selects which loop, and t as the time parameter along

the loop. If x ∈ M , then the fiber over x is denoted by Px and it is isomorphic to

SU(N)/ZN . Let γx be a loop with base point x. Parallel transport along γx gives a

map (holonomy) H(γx) : Px → Px that we can think as a group element in SU(N)/ZN .

Consider a family of paths Γs as described in Section 3.1. We note that H(Γ0) =

H(Γ1) = I where I is the identity in SU(N)/ZN (see Figure 5). Note that we have

constructed a map η : S1 → SU(N)/ZN given by η(s) = H(Γs). Note that η depends

on the connection A but by its definition, η belongs to a homotopy equivalence class

[η] ∈ π1(SU(N)/ZN) ≈ ZN . Consequently, the connections will fall into homotopy

equivalence classes labelled4 by π1(SU(N)/ZN). The gauge invariant ZN -flux is [η] and

it is determined by the connection and the homotopy class of the map [φ]. Analogous to

Section 3.1 we have a map ν : H2(M,Z)→ π1(SU(N)/ZN). In our case this equivalent

to saying that ν ∈ H2(M,ZN).

I would like to emphasize that there is a very important conceptual difference

between ZN flux in the non-abelian gauge theory and the abelian U(1) flux. Assume

4There may be other labels such as instanton number needed to fully label the homotopy equiva-
lence classes of connections.
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s

t Γs

Figure 5: The loop Γs described by selector parameter s.

we have a U(1) connection then we can redo the argument in the previous paragraph. A

difference is that we have a map η : S1 → U(1) with the property that η(0) = η(1) = 1.

Note that η(s) = exp(i
∫

Γs
A). These maps are classified by [η] ∈ π1(U(1)) = Z. There

is a major difference that arises because we have an abelian connection. The observation

is that

lim
s→1−

η(s) = 1 tells us lim
s→1−

∫
Γs

A = 2πn .

The abelian nature of the connection actually tells us more
∫
φ(S2)

F = 2πn. The

homotopy class of η determines the flux.

Things are very different in the SU(N)/ZN case. The notion of a non-abelian

Stokes’ Theorem is around but working with it is another question. We do have a

notion of ZN flux based on the holonomy. The integral type manipulations that we

used in the abelian case do not exist but the analogy with η(s) gives credence to a

notion of non-abelian flux. To each φ : S2 → M we can assign a homotopy invariant

in ZN .

This construction is much more difficult if π1(M) 6= 0, i.e., I don’t really know how

to do it.

6 Detecting Torsion

I learned this from an old paper by D. Freed [2]. Let me make some background

remarks first.

In this section I want to make some technical distinctions between three isomorphic

cyclic groups of order N . The group ZN ⊂ U(1) is the abelian multiplicative cyclic
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group with elements {1, e2πi/N , . . . , e2πi(N−1)/N}. The group Z/NZ is the additive group

{0, 1, . . . , N − 1} with the group operation being addition modulo N . This follows

from standard notation where NZ = {0,±N,±2N,±3N, . . .} and we use the standard

definition of the coset space Z/NZ. Let Q ⊂ R be the additive group of the rational

numbers. I want to describe the group Z/N ⊂ Q/Z. The elements of Z/N are taken

to be {
0,

1

N
,

2

N
, . . . ,

N − 1

N

}
where the group operation is addition modulo 1. Note that Q/Z is the additive group

of rational numbers in [0, 1) with the group operation being addition modulo 1.

A motivation for the above discussion is to consider the case of Z/nZ ⊕ Z/mZ
versus Z/n ⊕ Z/m. In the former when considering the group operation, we have to

keep track that things are mod n in the first factor and mod m in the second factor.

In the latter case everything is mod 1 and the bookkeeping is easier.

Assume G is a group and K ⊂ G is a normal subgroup, then it is a fundamental

theorem of group theory that there exists a group H and a group homomorphism

φ : G → H such that K = kerG. A consequence of this is that there is a short exact

sequence 0 → K → G
φ−→ H → 0. In fact, it is easy to see that H ≈ G/K. Note that

if G is abelian then any subgroup K is normal and therefore you always have a short

exact sequence 0→ K → G→ G/K → 0.

Let G be an abelian group. An element g ∈ G is said to be torsion if there exists

N ∈ Z such that Ng = 0. Note that TorG, the set of all torsion elements, is a

subgroup. The proof follows from the observation that if N1g1 = 0 and N2g2 = 0 then

N1N2(g1 + g2) = 0. Since G and TorG are abelian we have that FreeG = G/(TorG)

is a group and we have the short exact sequence

0→ TorG→ G→ FreeG→ 0 . (6.1)

Note that given g ∈ G, the free part of g, denoted by gfree is well defined and given

by the projection5 gfree = g + TorG. For generic g ∈ G there is no canonical way of

specifying the component of g in TorG, see Figure 6.

It follows from the above that we automatically have a short exact sequence

0→ TorHk(M,Z)→ Hk(M,Z)→ FreeHk(M,Z)→ 0 . (6.2)

Let [ω] ∈ Hk(M,Z) and let [ω]free ∈ FreeHk(M,Z) be its well defined free part.

The DeRham theorem tells you that there is a closed k-form ω that represents [ω]free.

5We in an abelian group so a coset is written additively.
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VW

W1

W2

v ⊥

⊥

V/Wv + W

Figure 6: Let V be a vector space and W a vector subspace. Remember that
V/W is the vector space defined by the equivalence relation v1 ∼ v2 if v1−v2 ∈W .
The coset associated with the equivalence class of v is written v + W . There is
a canonical projection π : V → V/W . given by π : v 7→ v + W and a short
exact sequence 0 → W → V

π−→ V/W → 0, i.e., kerπ = W . The lesson here
is that given v ∈ V and W ⊂ V there is no canonical way to project v to W .
There is a canonical notion of projection along W given by π. Decompose v

we need a complementary subspace W⊥ such that V = W ⊕W⊥. There are
many choices of W⊥ as illustrated in the figure by W⊥

1 and W⊥
2 . The projection

of v into W requires the complementary subspace and there is no canonical
construction unless you have some extra structure such as a metric on V that
gives the orthogonal projection. In summary, given W ⊂ V there is no canonical
way to state what is the component of v along W unless v ∈W .
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If z is a integral k-cycle then the cohomology-homology pairing is given by〈
[ω]free, [z]

〉
=

(∫
z

ω

)
∈ Z .

DeRham cohomology cannot detect torsion. The reason is that DeRham cohomology is

real cohomology Hk(M,R) since the integral of a generic closed k-form over an integral

cycle does not have to be an integer. Algebra tells you that Hk(M,R) = R⊗Hk(M,Z),

i.e., replace “integer scalars” by “real scalars”. Assume [τ ] ∈ Hk(M,Z) is a torsion

element, N [τ ] = 0, then with “real scalars” we can write [τ ] = 1[τ ] = 1
N
·N [τ ] = 0. In

summary, tensoring by R kills the torsion. Said differently we have that Nτ = dφ and∫
z
τ = 1

N

∫
z
dφ = 1

N

∫
∂z
φ = 0.

6.1 Miscellaneous Homology/Cohomology Stuff

I will fix the manifold and choose a good simplicial decomposition. In homology we

have the following: the k-chains with integer coefficients will be denoted by Ck, the

k-cycles will be denoted by Zk = ker ∂k, and the k-dimensional boundaries will be

denoted by Bk = im ∂k+1 = ∂Ck+1. The k-th homology group is given by Hk =

Zk/Bk = (ker ∂k)/(im ∂k+1). This is the object we have normally written as Hk(M,Z).

Let (e1, e2, . . . , er) be a basis for Ck then a general k-chain is of the form k1e1+ · · ·+
krer where kj ∈ Z. This tells you that Ck is isomorphic6 to the free abelian group Zr.

When you look atHk = Zk/Bk you no longer get a free group but something of the form

Zm⊕Z/n1⊕· · ·⊕Z/nl as we saw in the case of the Klein bottle in Section 1.2. A nice

thing about free abelian groups is that “linear algebra” is very much like linear algebra

for vector spaces. First we define the cochains as the integer valued “linear functionals”,

i.e., the “dual space”: Ck = Hom(Ck,Z). I think that it is clear that dimCk = dimCk

and that Ck is a free abelian group. Given the sequence of maps ∂k : Ck → Ck−1 there

are the adjoint maps δk : Ck → Ck+1 defined by (δkω)(c) = ω(∂k+1c). This leads to

the sequences

· · · ←−−− Ck−1
∂k←−−− Ck

∂k+1←−−− Ck+1 ←−−− · · ·

· · · −−−→ Ck−1 δk−1−−−→ Ck δk−−−→ Ck+1 −−−→ · · ·

The k-cocycles are defined to be Zk = ker δk and the k-coboundaries are defined

to be Bk = im δk−1 = δk−1C
k−1. The k-th cohomology group is Hk = Zk/Bk =

(ker δk)/(im δk−1). Hk and Hk are in general not dual spaces because in general Hk

6In a different triangulation the dimensionality of Ck will generally change. The big theorem is
that the homology is independent of the simplicial decomposition.
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and Hk are not free abelian groups. Note that the only group homomorphism from

Z/n to Z is the zero homomorphism. This means that TorHk “plays no role” in

Hom(Hk,Z), i.e., Hom(Hk,Z) is entirely determined by Hom(FreeHk,Z). In fact,

the universal coefficients theorem says that the free parts are dual spaces of each

other: FreeHk ≈ Hom(FreeHk,Z). The situation is more delicate for the torsion

parts where the universal coefficients theorem states that there is a shift by one:

TorHk = Hom(TorHk−1,Q/Z). Notice that we are now studying linear functionals

with values in Q/Z.

What is an element of Hom(TorHk−1,Q/Z)? Choose $ ∈ Hom(Ck−1,Q), namely,

a linear functional with “rational coefficients”, then the induced homomorphism ϕ ∈
Hom(TorHk−1,Q/Z) is given by ϕ([z]) = $(z) mod 1 for every [z] ∈ TorHk−1 with

the proviso that things have to be independent of representative of [z] chosen. This

means that

$(z + ∂x) = $(z) mod 1 ,

for every [z] ∈ TorHk−1 and x ∈ Ck. This tells you that $(∂x) = (d$)(x) = 0 mod 1.

We are now at the tricky part. The statement that (d$)(x) = 0 mod 1 for all x ∈ Ck
tells you that η = d$ is an integer cochain! In fact since d2 = 0 we have that η ∈ Zk.

Note that in general there does not exist an integer cochain ν ∈ Ck−1 such that η = dν

though there is a rational cochain $ ∈ Hom(Ck−1,Q) such η = d$. In fact there exists

an integer L such that L$ is an integer cochain which implies that Lη = d(L$) and

consequently the cohomology class of the integer cochain Lη is trivial, i.e., L[η] = 0,

and we conclude that [η] ∈ TorHk.

Next we use the fact that [z] is a torsion element which means that there exists

an integer N and a chain y ∈ Ck such that Nz = ∂y, i.e., N [z] = 0. One more

remark is that ∂
(

1
N
y
)

= z ∈ Ck−1 and 1
N
y ∈ Ck(Q). Since z is integral we have that

∂
(

1
N
y
)

= 0 mod 1 and therefore 1
N
y ∈ Zk(Q/Z) and represents a homology class[

1
N
y
]
∈ Hk(Q/Z). Summarizing, given [z] ∈ TorHk−1 you can construct

[
1
N
y
]
∈

Hk(Q/Z).

Note that (N$)(z) = $(Nz) = $(∂y) = (d$)(y) = η(y) ∈ Z. From this we

conclude that $(z) = 1
N
η(y) ∈ Q, and consequently

ϕ([z]) = $(z) mod 1 =
1

N
η(y) mod 1 = η

(
1

N
y

)
mod 1 ∈ Q/Z . (6.3)

There are three things we still have to verify to make sure the equation above repre-

sents the isomorphism TorHk ≈ Hom(TorHk−1,Q/Z). First, we have to verify that

everything is independent of the representative chosen for [z]. Let z′ = z + ∂v for

v ∈ Ck then $(z′) = $(z)+$(∂v) = 1
N
η(y)+(d$)(v) = 1

N
η(y)+η(v). Now η(v) ∈ Z
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so when we do the modulo 1 reduction to Q/Z the η(v) term is lost so we conclude

that $(z′) = $(z) mod 1. Second, we have to verify that things are independent of

the choice of y. If y and y′ are such that Nz = ∂y = ∂y′ then ∂(y′ − y) = 0 and we

conclude that y′ = y + z̃ where z̃ ∈ Ck. In terms of rational coefficients we have that

η(z̃) = (d$)(z̃) = $(∂z̃) = 0 and so we conclude that η(y′) = η(y). Finally we have

to verify that things are independent of the choice of η. So far we have established

that η ∈ Zk and [η] ∈ TorHk but we have not established that (6.3) only depends on

the cohomology class of η. To verify this consider η′ = η + dλ where λ ∈ Ck−1. Note

that 1
N

(dλ)(y) = λ
(

1
N
∂y

)
= λ(z) ∈ Z since λ and z have integer coefficients. We see

that 1
N
η′(y) = 1

N
η(y) mod 1. Clearly all we have done is reversible. In summary,

we have established the isomorphism TorHk ≈ Hom(TorHk−1,Q/Z) by finding the

explicit map.

How do we detect torsion? The idea is to use the isomorphism we established

TorHk ≈ Hom(TorHk−1,Q/Z). Namely, to every [η] ∈ TorHk these corresponds a

ϕ ∈ Hom(TorHk−1,Q/Z) and all we we have to do is exhibit ϕ.

Example 1. This example is from [2] but I find his discussion is too telegraphic and

incomprehensible. Assume we have a line bundle L → M with connection A and

curvature F . We wish to detect TorH2. Let [z] ∈ TorH1 then from our previous

discussion we know that there exists y ∈ C2 such that Nz = ∂y. Parallel transport

about z gives holonomy e−i
R

z A from this we can construct a homomorphism $′ ∈
Hom(C1,R/Z) by defining

$′(z) = − 1

2π

∫
z

A mod 1 .

The problem with this homomorphism is that in general it does not give a rational

number so we will have to modify it. To modify it appropriately we make a naive

incorrect computation that states that
∫
Nz
A =

∫
∂y
A =

∫
y
dA =

∫
y
F . In fact, in some

sense the point my paper [3] is that such a naive computation is incorrect because A

is defined only locally. You can verify this by observing that if we choose a different

y′ such that Nz = ∂y′ then as previously discussed we have that y′ = y + z̃ where

z̃ ∈ Z2. Redoing the above computation we would conclude that
∫
Nz
A =

∫
y′
F but∫

y′−y F =
∫
z
F = 2πn[z] where n[z] ∈ Z. In the naive manipulations there is an

ambiguity in 2πZ. This means that

1

2π

∫
Nz

A =
1

2π

∫
y

F mod 1 .

Motivated by the above discussion we consider the homomorphism

$(z) =

(
− 1

2π

∫
z

A+
1

N

1

2π

∫
y

F

)
mod 1 ∈ Z/N ⊂ Z/Q .
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A brief computation shows $(z) on depends to [z] ∈ TorH1 so we have constructed

ϕ ∈ Hom(TorH1,Q/Z) by defining

ϕ([z]) = $(z) =

(
− 1

2π

∫
z

A+
1

N

1

2π

∫
y

F

)
mod 1 . (6.4)

By the general theorem ϕ represents a torsion class [η] ∈ TorH2. If we want to be

more accurate we note that ϕ ∈ Hom(TorH1,Z/N) ⊂ Hom(TorH1,Q/Z).

7 Classifying Spaces

7.1 Classifying spaces for vector bundles

This is my recollection of explanations by I. M. Singer in the past. Let F be a field,

either R or C. The Grassmann manifold Grk(FN) is the manifold of k-planes in FN ,

e.g., Grk(RN) ≈ SO(N)/(SO(k) × SO(N − k)). There is a tautological vector bundle

Q of rank k over Grk(FN). Namely, a point p ∈ FN is a k-dimensional plane. The fiber

Qp at this point is precisely that k-dimensional plane.

Let M be a manifold and let E be a rank k F-vector bundle over M . There is

a theorem that states that there exists a vector bundle E⊥ → M with the property

that E ⊕ E⊥ ≈ M × FN for some sufficiently large N . Namely, you can always find a

vector bundle E⊥ of sufficiently large rank such that E ⊕ E⊥ is a trivial bundle. The

theorem is stronger. It actually states that for all vector bundles of rank k over M

you can determine a large enough N that works universally. I will now describe a map

ϕ : M → Grk(FN). At a point x ∈M we have the fiber Ex. Since E ⊕ E⊥ = M × FN

we have that Ex is a k-plane in FN . The image of x under ϕ is precisely that k-plane.

By construction we have that the pull-back of the tautological bundle ϕ∗Q is precisely

E. The big theorem is that all rank k vector bundles arise from a map ϕ and that

homotopic maps lead to isomorphic vector bundles. This is the sense that homotopy

equivalence classes of maps [M,Grk(FN)] classify all rank k F-vector bundles over M .

It is possible to make estimates for how large an N you need but many people find

it convenient to take an inductive limit and consider N = ∞ so you get the BG type

of classifying spaces that correspond to Grk(HF) for some Hilbert space HF.

How do you prove the E ⊕ E⊥ theorem? Assume M is a compact manifold and

let {Vα} be a good cover for M , and let {ρα} be a partition of unity subordinate to

the cover. This means that ρα : Vα → [0, 1], ρα has compact support in Vα, and∑
α ρα = 1. Since Vα is contractible, the bundle restricted to Vα is trivial and we
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can find k non-vanishing sections {(s1)α, (s2)α, . . . , (sk)α} that span the vector bun-

dle over Vα. We don’t care what these sections do outside of Vα. Consider the set

∪α{ρα(s1)α, ρα(s2)α, . . . , ρα(sk)α} = {si}Ni=1}. Note that N < ∞ because M is com-

pact if not we could consider N =∞. This finite number of global sections of E span

the fiber at each point. Remember that the space of sections of E is an infinite di-

mensional vector space. This subset of sections {si}Ni=1 spans an N -dimensional vector

subspace W of the space of sections. Note that there is a map evx : W → Ex given by

evx : a1s1 + · · ·+ aNsN 7→ a1s1(x) + · · ·+ aNsN(x) ∈ Ex .

We define ker evx = E⊥
x then we immediately have that Ex⊕E⊥

x = FN . Doing this over

all points in M we see that E ⊕E⊥ = M × FN because it is the same FN everywhere.

7.2 Classifying spaces for principal bundles

This needs a little bit more work.

By doing a variant on the construction in the previous section you can do a clas-

sification for principal bundles. The idea is that if you have a metric on FN then this

induces a metric on each Ex. A metric on the vector space Ex allows you to choose an

orthonormal frame. Any other orthonormal frame is obtained by the appropriate uni-

tary/orthogonal group. Let P → M be a principal fiber bundle with structure group

G which is either U(k) or SO(k) with associated vector bundle E → M . The Stiefel

manifold Vk(FN) ≈ SO(N)/ SO(N − k) is the set of all orthonormal k-frames in FN .

This manifold has a tautological principal bundle F → Vk(FN) with structure group

G. For a frame f ∈ Vk(FN), the fiber Fx is the set of all orthonormal k-frames for the

k-plane determined by f . All these different frames are related by a G transformation.

This principal bundle is denoted by EG and the base by BG. The claim is that all

principal G-bundles over M are classified by homotopy equivalence classes of maps

[M,BG].
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